A new spectrophotometric method analysis of adrenaline in pharmaceuticals based on laccase-like nanozymes

  • O. M. Demkiv Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine https://orcid.org/0000-0002-7999-4436
  • N. Ye. Stasyuk Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine https://orcid.org/0000-0001-6550-8145
  • G. Z. Gayda Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine https://orcid.org/0000-0003-4015-8083
  • N. M. Grynchyshyn Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies, Lviv, Ukraine
  • O. T. Novikevuch Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies, Lviv, Ukraine
  • O. G. Demchuk Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies, Lviv, Ukraine
  • M. V. Gonchar Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
Keywords: spectrophotometric method, laccase-like nanozymes, nanolaccase, adrenaline analysis, pharmaceuticals.


Nanozymes, which have high enzyme-like activity of natural enzymes, are very promising for analytical purposes, in particular, for the development of methods for sensitive, quantitative detection of practically important analytes – biomarkers of common diseases or pharmaceutical products. Recently, it has been reported that artificial enzymes with laccase-like activity or “nanolaccases (nLacs),” can serve as catalytic elements for the creation of sensitive methods for catecholamines. Our work aimed to obtain laccase-like nanozymes and characterize and demonstrate their suitability for spectrophotometric adrenaline (AD) analysis. In this article, we report on preparing five hexacyanoferrate nanoparticles (HCF NPs) that possess laccase-like activity, particularly, Co-HCF, Ni-HCF, Mn-HCF, Zn-HCF, and Cu-HCF. Among the investigated nLacs, Cu-HCF was selected and characterized. It was shown that Cu-HCF reveals the highest activities, is stable in various pH conditions in the range 3.0–6.5, and has satisfactory stored stability. A new spectrophotometric method for the quantitative detection of AD was created using the selected nLacs. The linearity of the proposed method is in the range from 5 μM to 50 μM (0.66–11 μg/ml), and the limit of detection is 1.5 μM (0.33 μg/ml), which is lower than that catalyzed by native laccase (1.15 μg/ml). The proposed method was tested on the real samples of pharmaceuticals, and the obtained data agree with the data declared by the producer. The resulting nLacs have great potential for use in catalysis of mimetics, environmental restoration, and sensor design. Thus methods, the obtained Cu-HCF has great potential application in spectrophotometric and biosensor method for analysis of biologically active toxic compounds in surface waters.


Download data is not yet available.


Akerman-Sanchez, G., & Rojas-Jimenez, K. (2021). Fungi for the bioremediation of pharmaceutical-derived pol-lutants: A bioengineering approach to water treat-ment. Environ. Adv., 4, 100071. DOI: 10.1016/j.envadv.2021.100071.

Al-Abachi, M., Al-Ghabsha, M., & Shahbaz, N. A. (1989). Spectrophotometric Determination of microgram amounts of adrenaline with chloranil. Microchemical Journal, 31(3), 272–274. DOI: 10.1016/0026-265X(85)90113-4.

Al-Ameri, S. A. H. (2016). Spectrophotometric determina-tion of adrenaline in pharmaceutical preparations. Arabian Journal of Chemistry, 9(2), S1000–S1004. DOI: 10.1016/j.arabjc.2011.10.001.

Al-Ayash, A. S. (2008). A new sensitive spectrophotomet-ric method for the determination of adrenaline in pharmaceutical preparations. Journal of Al-Nahrain University, 11(3), 46–54. DOI: 10.22401/JNUS.11.3.05.

Arregui, L., Ayala, M., Gómez-Gil, X., Gutiérrez-Soto, G., Hernández-Luna, C. E., Santos, H. M., Levin, L., Ro-jo-Domínguez, A., Romero-Martínez, D., Saparrat, M. C. N., Trujillo-Roldán, M. A., & Valdez-Cruz, N. A. (2019). Laccases: structure, function, and potential application in water bioremediation. Microb Cell Fact, 18, 200. DOI: 10.1186/s12934-019-1248-0.

Baselt, R. C., & Cravey, R. H. (1989). Disposition of toxic drugs and chemicals in man. Vol. 8. Davis, CA: Bio-medical publications, 95–104.

Bibire, N., Christopoulos, L., Apostu, M., & Dorneanu, V. (2007). Quantitative determination of adrenaline by visible spectrophotometric method. Rev. Med. Chir. Soc. Med. Nat. Iasi., 111(3), 779–782. URL: https://pubmed.ncbi.nlm.nih.gov/18293717.

Bradley, P. M., Journey, C. A., Button, D. T., Carlisle, D. M., Huffman, B. J., Qi, S. L., Romanok, K. M., & Van Metre, P. C. (2020). Multi-region assessment of phar-maceutical exposures and predicted effects in USA wadeable urban-gradient streams. PLoS One, 15(1), e0228214. DOI: 10.1371/journal.pone.0228214.

Demkiv, O., Stasyuk, N., Gayda, G., & Gonchar, M. (2021). Highly Sensitive amperometric sensor based on laccase-mimicking metal-based hybrid nanozymes for adrenaline analysis in pharmaceuticals. Catalysts, 11(12), 1510. DOI: 10.3390/catal11121510.

Emamzadeh, F. N., & Surguchov, A. (2018). Parkinson ’s disease: Biomarkers, Treatment, and Risk Factors. Front. Neurosci, 12, 612. DOI: 10.3389/fnins.2018.00612.

Kojło, A., & Calatayud, J. M. (1990). Spectrophotometric determination of adrenaline with an oxidative column in a FIA assembly. J. Pharm. Biomed. Anal., 8, 663–666. DOI: 10.1016/0731-7085(90)80098-a.

Kothari, Y. K., & Srinivasulu, K. (1989). A New Spectro-photometric Determination of Adrenaline with CDTA. Asian Journal of Chemistry, 1(1), 42–46. URL: https://asianjournalofchemistry.co.in/User/ViewFreeArticle.aspx?ArticleID=1_1_7.

Liu, C., Zhang, J., Zhang, X., Zhao, L., & Shuang, L. (2018). Enantiomeric separation of adrenaline, nora-drenaline, and isoprenaline by capillary electrophore-sis using streptomycin-modified gold nanoparticles. Mikrochim. Acta, 185, 227. DOI: 10.1007/s00604-018-2758-x.

Massima Mouele, E. S., Tijani, J. O., Badmus, K. O., Pe-reao, O., Babajide, O., Zhang, C., Shao, T., Sonin, E., Tarasenko, V., Fatoba, O. O., Laatikainen, K., & Petrik, L. F. (2021). Removal of Pharmaceutical Resi-dues from Water and Wastewater Using Dielectric Barrier Discharge Methods—A Review. Int. J. Envi-ron. Res. Public Health, 18, 1683. DOI: 10.3390/ijerph18041683.

McCorry, L. K. (2007). Physiology of the Autonomic Nervous System. Am. J. Pharm. Educ., 71, 78. DOI: 10.5688/aj710478.

Menon, S., Jesny, S., Sivasankaran, U., & Girish, K. K. (2016). Fluorometric Determination of Epinephrine: A Green Approach. Anal. Sci., 32, 999–1001. DOI: 10.2116/analsci.32.999.

Montaño Osorio, C., Bonilla-Martínez, D., Villegas-González, M. A., & Obaya Valdivia, A. E. (2021) Val-idation of a Spectrophotometric Analytical Method for the Quantitative Determination of Adrenaline in Injectable Pharmaceutical Formulations. American Journal of Pharmacological Sciences, 9(1), 40–45. DOI: 10.12691/ajps-9-1-4.

Peaston, A. E., Evsikov, A. V., Graber, J. H., Vries, W. N., Holbrook, A. E., Solter, D., & Knowles, B. B. (2004). Retrotransposons regulate host genes in mouse oo-cytes and preimplantation embryos. Dev. Cell., 7, 597–606. DOI: 10.1016/j.devcel.2004.09.004.

Rana, R. S., Singh, P., Kandari, V., Singh, R., Dobhal, R., Gupta, S. (2017). A review on characterization and bioremediation of pharmaceutical industries’ wastewater: An Indian perspective. Appl. Water Sci., 7, 1–12. DOI: 10.1007/s13201-014-0225-3.

Rebollar-Pérez, G., Campos-Terán, J., Ornelas-Soto, N., Méndez-Albores, A., & Torres, E. (2016). Biosensors based on oxidative enzymes for detection of envi-ronmental pollutants. Biocatalysis, 1, 118–129. DOI: 10.1515/boca-2015-0010.

Rodriguez-Dopazo, M. J., Silva, M., & Pérez-Bendito, D. (1989). Indirect kinetic method for the quantitative determination of catecholamines in pharmaceuticals. J. Microchem, 39(2), 235–240. DOI: 10.1016/0026-265X(89)90037-4.

Stasyuk, N., Smutok, O., Demkiv, O., Prokopiv, T., Gayda, G., Nisnevitch, M., & Gonchar, M. (2020). Synthesis, Catalytic Properties and Application in Bio-sensorics of Nanozymes and Electronanocatalysts: A Review. Sensors. 20(16), 4509. DOI: 10.3390/s20164509.

Taylor, D. (2015). The Pharmaceutical Industry and the Future of Drug Development. In Pharmaceuticals in the Environment, 41, 1–33. DOI: 10.1039/9781782622345-00001.

Thomas, A., Geyer, H., Mester, H.J., Schänzer, W., Zim-mermann, E., Thevis, M. (2006). Quantitative deter-mination of Adrenaline and Noradrenaline in Urine Using Liquid Chromatography-Tandem Mass Spec-trometry. Chromatographia, 64, 587–591. DOI: 10.1365/s10337-006-0067-8.

Wang, J., Huang, R., Qi, W., Su, R., Binks, B. P., & He, Z. (2019). Construction of a bioinspired laccase-mimicking nanozyme for the degradation and detec-tion of phenolic pollutants. Applied Catalysis B: Envi-ronmental, 254, 452–462. DOI: 10.1016/j.apcatb.2019.05.012.

Zuber, S. M., Kantorovich, V., & Pacak, K. (2011). Hyper-tension in Pheochromocytoma: Characteristics and Treatment. Endocrinol. Metab. Clin. North Am, 40, 295–311. DOI: 10.1016/j.ecl.2011.02.002.

Abstract views: 5
PDF Downloads: 1
How to Cite
Demkiv, O., Stasyuk, N., Gayda, G., Grynchyshyn, N., Novikevuch, O., Demchuk, O., & Gonchar, M. (2022). A new spectrophotometric method analysis of adrenaline in pharmaceuticals based on laccase-like nanozymes. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 24(106), 142-148. https://doi.org/10.32718/nvlvet10622