X-ray macromorphological and biochemical assessment of consolidation of fractures of long tubular bones under conditions of osteoreplacement with calcium-phosphate ceramics doped with germanium for osteoporosis in rab-bits


Keywords: hydroxyapatite composite, bioceramics, bone fractures, compact and spongy bone tissue, rabbits.

Abstract

Among several factors that can cause a violation of the course of reparative osteogenesis, previous diseases associated with a change in the structural and functional state of bone tissue and primarily osteoporosis are considered significant. Osteoporotic fractures are difficult to treat. Along with systemic therapy, locally applied bone substitute materials, particularly unalloyed and alloyed calcium phosphate ceramics with pronounced osteoconductive, osteoinductive, and osteointegration properties. The work aims to evaluate the effect of calcium-phosphate ceramics doped with germanium on post-traumatic bone regeneration in conditions of secondary osteoporosis in rabbits. Experimental osteoporosis in rabbits was induced by administration of 0.4 % dexamethasone solution (KRKA, Slovenia) for 21 days at a dose of 1.2 mg/kg of body weight. Experimental (n = 9) and control (n = 9) groups of animals were formed. Animals of the experimental group had defects replaced with granules of hydroxyapatite ceramics, synthesized based on hydroxyapatite and β-tricalcium phosphate, doped with germanium. In rabbits of the control group, bone defects healed under a blood clot. Blood samples to determine the level of total calcium (Ca) and inorganic phosphorus (P) were taken before surgery and on 7-,14th, 30th, and 60th day of the study. X-ray studies were performed on the RUM-20 X-ray machine on the 14th, 30th, and 60th day of reparative osteogenesis. Radiologically and macromorphologically, it was established that reparative osteogenesis in the experimental animals proceeds more dynamically compared to the control group and is characterized by a high density of bone tissue at the site of the defect already on the 14th day after the injury, a moderate periosteal and early appearance of the endosteal reaction. The content of total calcium in the animals of the experimental group on the 14th day after the injury was 1.3 times (P < 0.001) higher than that of the control and animals before the operation, and on the 30th day, it was 1.2 times (P < 0.001) in accordance. The concentration of inorganic phosphorus (P) on the 14th and 30th days of reparative osteogenesis in animals of the experimental group was 1.1 times (P < 0.05) lower than in control animals, and on the 60th day in 1.4 times (P < 0.01), respectively. Systemic osteoporosis in experimental animals causes a violation of reparative osteogenesis due to the prolongation of the inflammatory-resorptive stage and cartilaginous callus and complicated mineralization of bone regeneration. Calcium-phosphate ceramics is a promising material for replacing bone defects in animals with systemic secondary osteoporosis.

Downloads

Download data is not yet available.

References

Abu-Amer, Y., & Darwech, I. & Otero, J. (2007). Osteoporosis and Osteopetrosis. DOI: 10.1002/ 9780470015902.a0006017.

Bian, D., Zhou, W., Den, J., & Li, Y. (2017). Development of magnesium-based biodegradable metals with dietary trace element germanium as orthopaedic implant applications. Acta Biomaterialia, 64, 421–436. DOI: 10.1016/j.actbio.2017.10.004.

Bonucci, E., & Ballanti, P. (2014). Osteoporosis-bone remodeling and animal models. Toxicol Pathol, 42(6), 957–969. DOI: 10.1177/0192623313512428.

Brusko, A. T., & Haiko, H. V. (2005). Funktsyonalnaia perestroika kostei y ee klynycheskoe znachenye [Functional reconstruction of bones and its clinical significance]. Luhansk, Luhanskyi hosudarstvennuy medytsynskyi unyversytet (in Russian).

Bumeister, V. I., & Pohorelov, M. V. (2008). Suchasnyi pohliad na reparatyvnyi osteohenez. [A modern view of reparative osteogenesis]. Svit medytsyny ta biolo-hii, 4, 104–110 (in Ukrainian).

Chemerovskyi, V. O. (2020). Renthenohrafichna, makromorfolohichna i hematolohichna otsinka hidroksyapatytnoi keramiky z riznymy fizyko-khimichnymy vlastyvostiamy [Radiographic, macromorphological and hematological evaluation of hydroxyapatite ceramics with different physical and chemical properties]. Naukovyi visnyk veterynarnoi medytsyny, 1, 140–152. DOI: 10.33245/2310-4902-2020-154-1-140-152 (in Ukrainian).

Egermann, M. J., & Schneider, G. E. (2005). Animal models for fracture treatment in osteoporosis. Osteoporos Int, 16, 129‒138. DOI: 10.1007/s00198-005-1859-7.

Fujii, A., Kuboyama, N., Yamane, J., Nakao, S., & Furukawa, Y. (1993). Effect of organic germanium compound (Ge-132) on experimental osteoporosis in rats. General Pharmacology: The Vascular System, 24(6), 1527–1532. DOI: 10.1007/s10653-017-0061-0.

Giannoudis, P., Tzioupis, C., Almalki, T., & Buckley, R. (2007). Fracture healing in osteoporotic fractures: Is it really different?: A basic science perspective. Injury, 38(1), S90-S99. DOI: 10.1016/j.injury.2007.02.014.

Goldhahn, J., Jenet, A., Schneider, E., & Lill, C. A. (2005). Slow rebound of cancellous bone after mainly steroid-induced osteoporosis in ovariectomized sheep. J Orthop.Trauma, 19(1), 23–28. DOI: 10.1097/ 00005131-200501000-00005.

Haaland, P. J., Sjöström, L., Devor, M., & Haug, A (2009). Appendicular fracture repair in dogs using the locking compression plate system: 47 cases. Vet. Comp. Orthop Traumatol., 22(4), 309–315. DOI: 10.3415/VCOT08-05-0044.

Li, L., Ruan, T., Lyu, Y., & Wu, B. (2017). Advancesin Effect of Germanium or Germanium Compoundson Animals. Journalof Biosciences and Medicines, 5(7), 56–73. DOI: 10.4236/jbm.2017.57006.

Oheim, R., Amling, M., Ignatius, A., & Pogoda, P. (2012a). Large animal model for osteoporosis.in humans: the ewe. Eur Cell Mater, 24, 372–385. DOI: 10.22203/ecm.v024a27.

Oheim, R., Beil, F.T., Barvencik, F., Egermann, M., Amling, M., Clarke, I. J. et al. (2012b). Targeting the lateral but not the third ventricle induces bone loss in ewe: An experimental approach to generate an improved large animal model of osteoporosis. Trauma Acute Care Surg, 72(3), 720–726. DOI: 10.1097/ TA.0b013e318238b3bd.

Oheim, R., Schinke, T., Amling, M., & Pogoda, P. (2016). Can we induce osteoporosis in animals comparable to the human situation? Injury, 47(1), S3–S9. DOI: 10.1016/S0020-1383(16)30002-X.

Oheim, R., Tsourdi, E., Seefried, L., Beller, G., Schubach, M., Vettorazzi, E. et al. (2022). Genetic Diagnostics in Routine Osteological Assessment of Adult Low Bone Mass Disorders. J Clin Endocrinol Metab, 107(7), e3048–e3057. DOI: 10.1210/clinem/dgac147.

Podaropoulos, L., Veis, A.A., Papadimitriou, S., Alexandridis, C., et al. (2009). Bone regeneration using b-tricalcium phosphate in a calcium sulfate matrix. Implantol, 35(1), 28–36. DOI: 10.1563/1548-1336-35.1.28.

Povorozniuk, V. V., Dedukh, N. V., Hryhoreva, N. V., & Hopkalova, Y. V. (2012). Еksperymentalniy osteoporoz. [Experimental osteoporosis]. Kyiv (in Ukrainian).

Raisz, L. G. (2005). Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest, 115(12), 3318–3325. DOI: 10.1172/JCI27071.

Rublenko, M. V., & Semeniak, S. A. (2015). Morfo-renthenolohichna i biokhimichna kharakterystyka reparatyvnoho osteohenezu za zamishchennia kistkovykh defektiv Biominom-HT u tvaryn. [Morpho-radiological and biochemical characteristics of reparative osteogenesis for replacing bone defects with Biomin-HT in animals]. Nauk. visnyk vet. medytsyny: zb. nauk. prats. Bila Tserkva, 1(118), 98–106 (in Ukrainian).

Rublenko, M. V., Andriiets, V. H., Semeniak, S. A., & Ulianchych, N. V. (2015). Vykorystannia kompozytnykh materialiv za perelomiv trubchastykh kistok u tvaryn. [The use of composite materials for fractures of tubular bones in animals]. Bila Tserkva (in Ukrainian).

Shevchenko, S. M. (2020). Dynamika hematolohichnykh pokaznykiv, makromorfolohichna i renthenolohichna kartyny reparatyvnoho osteohenezu v kroliv za vykorystannia trombotsytarnykh kontsentrativ ta hidroksyapatytnoi keramiky. [Dynamics of hematological indicators, macromorphological and X-ray pictures of reparative osteogenesis in rabbits using platelet concentrates and hydroxyapatite ceramics]. Naukovyi visnyk veterynarnoi medytsyny, 1, 153–164. URL: https://nvvm.btsau.edu.ua/en/content/dynamics-hematological-parameters-macromorphological-and-radiological-results-reparative#bootstrap-fieldgroup-nav-item--annotation (in Ukrainian).

Słupski, W., Jawien, P., & Nowak, B. (2021). Botanicals in Postmenopausal Osteoporosis. Nutrients, 13(5), 1609. DOI: 10.3390/nu13051609.

Smith, S. Y., Jolette, J., & Turner, C. H. (2009). Skeletal health: primate model of postmenopausal. Osteoporosis. Am J Primatol, 71, 752–765. DOI: 10.1002/ajp.20715.

Sturmer, K. M. (1996). Pathophysiology disrupted bone healing. Orthopaede, 25(5), 386‒393. DOI: 10.1007/ s001320050039.

Todosiuk, T. P. (2020). Rentheno- ta makromorfolohichna otsinka reparatyvnoho osteohenezu za implantatsii hidroksyapatytnoho kompozytu, lehovanoho hermaniiem [X-ray and macromorphological evaluation of reparative osteogenesis after implantation of hydroxyapatite composite doped with germanium]. Nauk. visnyk vet. med., Bila Tserkva, 2, 183–194. DOI: 10.33245/2310-4902-2020-160-2-183-194 (in Ukrainian).

Wang, J. W., Li, W., Xu, S. W. et al. (2005). Osteoporosis influences the middle and late periods of fracture healing in a rat osteoporotic model. Chin. J. Traumatol, 8(2), 111‒116. URL: https://pubmed.ncbi.nlm. nih.gov/15769311.

Waters, R. V., Gamradt, S. C., Asnis, P. et al. (2000). Systemic corticosteroids inhibit bone healing in a rabbit ulnar osteotomy model. Acta Orthop. Scand, 71(3), 316–321. DOI: 10.1080/000164700317411951.

Abstract views: 4
PDF Downloads: 1
Published
2022-07-16
How to Cite
Todosiuk, T., Rublenko, M., Vlasenko, V., & Ulanchych, N. (2022). X-ray macromorphological and biochemical assessment of consolidation of fractures of long tubular bones under conditions of osteoreplacement with calcium-phosphate ceramics doped with germanium for osteoporosis in rab-bits. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 24(106), 149-157. https://doi.org/10.32718/nvlvet10623

Most read articles by the same author(s)